122 research outputs found

    Assigning UPDRS Scores in the Leg Agility Task of Parkinsonians: Can It Be Done through BSN-based Kinematic Variables?

    Full text link
    In this paper, by characterizing the Leg Agility (LA) task, which contributes to the evaluation of the degree of severity of the Parkinson's Disease (PD), through kinematic variables (including the angular amplitude and speed of thighs' motion), we investigate the link between these variables and Unified Parkinson's Disease Rating Scale (UPDRS) scores. Our investigation relies on the use of a few body-worn wireless inertial nodes and represents a first step in the design of a portable system, amenable to be integrated in Internet of Things (IoT) scenarios, for automatic detection of the degree of severity (in terms of UPDRS score) of PD. The experimental investigation is carried out considering 24 PD patients.Comment: 10 page

    Breve istoria delle variazioni del giansenismo dalla sua origine sino al presente

    Get PDF
    Il. xil. a toda plana en p. 10

    Classification-Based Screening of Parkinson’s Disease Patients through Graph and Handwriting Signals

    Get PDF
    Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, affecting millions of people worldwide, especially among the elderly population. It has been demonstrated that handwriting impairment can be an important early marker for the detection of this disease. The aim of this study was to propose a simple and quick way to discriminate PD patients from controls through handwriting tasks using machine-learning techniques. We developed a telemonitoring system based on a user-friendly application for drawing tablets that enabled us to collect real-time information about position, pressure, and inclination of the digital pen during the experiment and, simultaneously, to supply visual feedback on the screen to the subject. We developed a protocol that includes drawing and writing tasks, including tasks in the Italian language, and we collected data from 22 healthy subjects and 9 PD patients. Using the collected signals and data from a preexisting database, we developed a machine-learning model to automatically discriminate PD patients from healthy control subjects with an accuracy of 77.5%

    An Integrated Multi-Sensor Approach for the Remote Monitoring of Parkinson’s Disease

    Get PDF
    The increment of the prevalence of neurological diseases due to the trend in population aging demands for new strategies in disease management. In Parkinson's disease (PD), these strategies should aim at improving diagnosis accuracy and frequency of the clinical follow-up by means of decentralized cost-effective solutions. In this context, a system suitable for the remote monitoring of PD subjects is presented. It consists of the integration of two approaches investigated in our previous works, each one appropriate for the movement analysis of specific parts of the body: low-cost optical devices for the upper limbs and wearable sensors for the lower ones. The system performs the automated assessments of six motor tasks of the unified Parkinson's disease rating scale, and it is equipped with a gesture-based human machine interface designed to facilitate the user interaction and the system management. The usability of the system has been evaluated by means of standard questionnaires, and the accuracy of the automated assessment has been verified experimentally. The results demonstrate that the proposed solution represents a substantial improvement in PD assessment respect to the former two approaches treated separately, and a new example of an accurate, feasible and cost-effective mean for the decentralized management of PD

    Faceting of Si and Ge crystals grown on deeply patterned Si substrates in the kinetic regime: phase-field modelling and experiments

    Get PDF
    The development of three-dimensional architectures in semiconductor technology is paving the way to new device concepts for various applications, from quantum computing to single photon avalanche detectors. In most cases, such structures are achievable only under far-from-equilibrium growth conditions. Controlling the shape and morphology of the growing structures, to meet the strict requirements for an application, is far more complex than in close-to-equilibrium cases. The development of predictive simulation tools can be essential to guide the experiments. A versatile phase-field model for kinetic crystal growth is presented and applied to the prototypical case of Ge/Si vertical microcrystals grown on deeply patterned Si substrates. These structures, under development for innovative optoelectronic applications, are characterized by a complex three-dimensional set of facets essentially driven by facet competition. First, the parameters describing the kinetics on the surface of Si and Ge are fitted on a small set of experimental results. To this goal, Si vertical microcrystals have been grown, while for Ge the fitting parameters have been obtained from data from the literature. Once calibrated, the predictive capabilities of the model are demonstrated and exploited for investigating new pattern geometries and crystal morphologies, offering a guideline for the design of new 3D heterostructures. The reported methodology is intended to be a general approach for investigating faceted growth under far-from-equilibrium conditions

    A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease

    Get PDF
    A home-based, reliable, objective and automated assessment of motor performance of patients affected by Parkinson’s Disease (PD) is important in disease management, both to monitor therapy efficacy and to reduce costs and discomforts. In this context, we have developed a self-managed system for the automated assessment of the PD upper limb motor tasks as specified by the Unified Parkinson’s Disease Rating Scale (UPDRS). The system is built around a Human Computer Interface (HCI) based on an optical RGB-Depth device and a replicable software. The HCI accuracy and reliability of the hand tracking compares favorably against consumer hand tracking devices as verified by an optoelectronic system as reference. The interface allows gestural interactions with visual feedback, providing a system management suitable for motor impaired users. The system software characterizes hand movements by kinematic parameters of their trajectories. The correlation between selected parameters and clinical UPDRS scores of patient performance is used to assess new task instances by a machine learning approach based on supervised classifiers. The classifiers have been trained by an experimental campaign on cohorts of PD patients. Experimental results show that automated assessments of the system replicate clinical ones, demonstrating its effectiveness in home monitoring of PD

    miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR.

    Get PDF
    miRNAs are small molecules involved in gene regulation. Each tissue shows a characteristic miRNAs epression profile that could be altered during neoplastic transformation. Glioblastoma is the most aggressive brain tumour of the adult with a high rate of mortality. Recognizing a specific pattern of miRNAs for GBM could provide further boost for target therapy. The availability of fresh tissue for brain specimens is often limited and for this reason the possibility of starting from formalin fixed and paraffin embedded tissue (FFPE) could very helpful even in miRNAs expression analysis. We analysed a panel of 19 miRNAs in 30 paired samples starting both from FFPE and Fresh/Frozen material. Our data revealed that there is a good correlation in results obtained from FFPE in comparison with those obtained analysing miRNAs extracted from Fresh/Frozen specimen. In the few cases with a not good correlation value we noticed that the discrepancy could be due to dissection performed in FFPE samples. To the best of our knowledge this is the first paper demonstrating that the results obtained in miRNAs analysis using Real-Time PCR starting from FFPE specimens of glioblastoma are comparable with those obtained in Fresh/Frozen samples
    • …
    corecore